RESEARCH GROUP FLIGHT PHYSICS & CONTROL

PE-AERO, SEPTEMBER 2015

FLIGHT PHYSICS & CONTROL RESEARCH GROUP

ΤΕΑΜ

Researchers

- Antônio B. G. N. (PostDoc)
- F. Bussamra (Prof)
- R. Gil A. S. (Prof)
- M. Morales (Prof)
- P. Paglione (Prof)
- F. Silvestre (Prof)
- ▶ G. Tissot (visiting PostDoc)

Collaborators

- C. Cesnik (EMBRAER Prof, UMich)
- R. Luckner (Prof, TU Berlin)
- A. Cavalieri
- M. Donadon
- L. C. S. Góes
- ▶ F. Almeida

Students

- Pedro G. (PhD candidate)
- D. Drewiacki (PhD candidate)
- Gregori P. (PhD candidate)
- Ticiano M. (PhD candidate)
- A. Köthe (PhD candidate, TUB)
- Rafael B. (MSc candidate)
- M. Ruggeri (MSc candidate)
- A. Simões (MSc candidate)
- Jaques G. (MSc candidate)
- Thiago V. (MSc candidate)
- Gefferson C. L. (MSc candidate)
- M. Ibrahim (MSc candidate)

F. SILVESTRE

FLIGHT PHYSICS & CONTROL RESEARCH GROUP

RESEARCH LINES

Dynamics and Control of Flexible Aircraft

- coupled flight and aeroelastic dynamics
- control of flexible aircraft and aeroservoelasticity
- ground and flight testing of aeroservoelastic systems
- flying qualities and PIO due to elastic effects

Flow Control

- time-domain transfer functions
- LQR with output feedback applied to ROM's

Intelligent Materials and Aeroelastic Control

> application of piezoelectric materials for active flutter control and gust load alleviation

- fusion of sensors and actuators for monitoring and controlling aeroelastic systems
- > application of shape memory alloys (SMA) in passive aeroelastic control

MOTIVATION

Aviation of the near future: green aircraft

- increase of efficiency and performance
- lighter structures: alternative materials
- reduction of induced drag: wings of higher AR

Demands

- coupling AE + FM: need of integrated models for flexible aircraft
- aeroservoelastic stability
- aeroelastic control, load alleviation, comfort augmentation

Challenges

- model complexity
- computational capacity
- lack of experimental validation

increase of airframe flexibility

F. SILVESTRE

DEVELOPMENT AND EXPERIMENTAL VALIDATION OF AE + FM INTEGRATED MODELS

F. SILVESTRE

Silvestre, CEAS, Springer Verlag, 2013

laboratory of new concepts

in aeronautics

aet into new ideas

AEROSERVOELASTIC STABILITY

F. SILVESTRE

AEROSERVOELASTIC STABILITY

F. SILVESTRE

FLYING QUALITIES AND PIO DUE TO AIRFRAME FLEXIBILITY

F. SILVESTRE

FLIGHT PHYSICS INOVA AERODEFESA

- validation of integrated models with different levels of complexity (moderately and highly flexible AC)
- coupling of AE and FM modes
- new techniques for control without notch filters — || AE in the loop

F. SILVESTRE

FLIGHT PHYSICS INOVA AERODEFESA

- project has started in 2015
- > X-HALE is currently in construction
- Instrumentation & test pilot
- Ongoing studies on modelling, trimming and control

FLIGHT PHYSICS INOVA AERODEFESA

DYNAMICS AND CONTROL OF FLEXIBLE AIRCRAFT FLIGHT PHYSICS INOVA AERODEFESA

POSSIBLE PHD THEMES:

- Unsteady, Non-linear Aerodynamic Formulation for Aircraft Undergoing Large Airframe Deformations
- Non-linear Trajectory Control for Highly Flexible Aircraft
- Load Alleviation Control Law Design for Highly Flexible Aircraft
- Application of Intelligent Materials for Shape Control of Highly Flexible Aircraft

FLOW CONTROL

TURBULENT JETS USING TIME-DOMAIN TF'S

FLOW CONTROL

OUTPUT FEEDBACK BASED ON ROM & OPTIMAL SENSOR POSITIONING

100

Ť.

F. SILVESTRE

SEPTEMBER 2015

50

CLOSED-LOOP

200

150

FLOW CONTROL

POSSIBLE PHD THEMES:

Output-feedback, fixed-order flow control based on ROM representation

Jet noise reduction using active control based on time-domain transfer functions

F. SILVESTRE

INTERESTED? PLEASE CONTACT:

Flávio Silvestre

flaviojs@ita.br

Gil Silva

gil@ita.br

F. SILVESTRE

